日本語

Course Code etc
Academic Year 2024
College University-wide Liberal Arts Courses (Comprehensive Courses)
Course Code FB999
Theme・Subtitle 多変量解析入門
Class Format On-demand (all classes are on-demand)
Class Format (Supplementary Items)
Campus Lecture
Campus Other
Semester Fall Others
DayPeriod・Room
ログインして教室を表示する(Log in to view the classrooms.)
Credits 2
Course Number CMP2231
Language English
Class Registration Method Course Code Registration
Assigned Year 配当年次は開講学部のR Guideに掲載している科目表で確認してください。
Prerequisite Regulations
Acceptance of Other Colleges
Course Cancellation 〇(履修中止可/ Eligible for cancellation)
Online Classes Subject to 60-Credit Upper Limit
Relationship with Degree Policy 各授業科目は、学部・研究科の定める学位授与方針(DP)や教育課程編成の方針(CP)に基づき、カリキュラム上に配置されています。詳細はカリキュラム・マップで確認することができます。
Notes ・大学院所属学生対象科目
・学部所属学生履修不可

【Course Objectives】

We will learn the basic ideas, representative methods, and usage methods in society.

【Course Contents】

We will learn the basic concepts and representative methods of multivariate analysis. In particular, we will describe (1) methods for prediction and factor search, and (2) methods for organizing and classifying complex information. Furthermore, through analysis exercises using the statistical analysis language R, students will understand the usage cases and roles of these methods.

Japanese Items

【授業計画 / Course Schedule】

1 What is multivariate analysis?
2 Review of descriptive statistics and inferential statistics
3 Correlation coefficient and partial correlation coefficient
4 Multiple regression analysis (1): From simple regression analysis to multiple regression analysis
5 Multiple regression analysis (2): Concept of multiple regression analysis
6 Multiple regression analysis (3): Dummy variables and cautions for regression analysis
7 Binomial logistic regression analysis
8 Two-way analysis of variance
9 Analysis of the triple cross tabulation table
10 Factor analysis (1): Concept of factor analysis
11 Factor Analysis (2): Factor Rotation and Cautions on Use
12 Principal component analysis
13 Cluster analysis
14 Structural equation modeling

【活用される授業方法 / Teaching Methods Used】

板書 /Writing on the Board
スライド(パワーポイント等)の使用 /Slides (PowerPoint, etc.)
上記以外の視聴覚教材の使用 /Audiovisual Materials Other than Those Listed Above
個人発表 /Individual Presentations
グループ発表 /Group Presentations
ディスカッション・ディベート /Discussion/Debate
実技・実習・実験 /Practicum/Experiments/Practical Training
学内の教室外施設の利用 /Use of On-Campus Facilities Outside the Classroom
校外実習・フィールドワーク /Field Work
上記いずれも用いない予定 /None of the above

【授業時間外(予習・復習等)の学修 / Study Required Outside of Class】

Please read the materials and related books and check for any unclear points. Please review the procedures for calculating the statistics you have learned, and solidify your understanding of their properties. The contents of the video are just an introduction to the vast ocean of multivariate analysis, and there is a wealth of statistical theory and application examples that are not fully explained. Do not be satisfied with the video, but organize your own questions and arguments about the content to deepen your understanding.The approximate learning time is 240 minutes per class, including watching the videos.

【成績評価方法・基準 / Evaluation】

種類 (Kind)割合 (%)基準 (Criteria)
平常点 (In-class Points)100 4 homeworks ×25%(100%)
備考 (Notes)

【テキスト / Textbooks】

その他 (Others)
The content presented online corresponds to the text

【参考文献 / Readings】

No著者名 (Author/Editor)書籍名 (Title)出版社 (Publisher)出版年 (Date)ISBN/ISSN
1 山田剛史,杉澤武俊,村井潤一郎 『Rによるやさしい統計学』 オーム社 2008
2 村井潤一郎 『初めてのR――ごく初歩の操作から統計解析の導入まで』 北大路書房 2015
3 中村永友 『Rで学ぶデータサイエンス2 多次元データ解析法』 共立出版 2010
4 Fox, John, and Sanford Weisberg An R Companion to Applied Regression SAGE 2011 (2nd ed.)

【履修にあたって求められる能力 / Abilities Required to Take the Course】

It is desirable that students have already taken lectures on introductory statistics, statistical testing, and statistical estimation offered as other subjects. This course is based on the assumption that students have already acquired a foundation in these subjects as basic knowledge.

As tasks involving various analyses will be assigned, it is preferable for students to be comfortable with computer operations. Even if there is a lack of confidence in this area, a positive attitude and willingness to engage are necessary.

【学生が準備すべき機器等 / Equipment, etc., that Students Should Prepare】

Use the statistical analysis software R.

【その他 / Others】

This course corresponds to subject E, "Methods of Multivariate Analysis," which is designated as a subject for social researchers by the Japan Association for Social Research. Due to the nature of this subject, knowledge of basic statistics, which is the content of subject C, D, is assumed. Students who are not sure of their knowledge should review the course by themselves. Students are required to log in to Canvas LMS in advance and check the specific instructions for the class.If you have any questions about the class content, please use the schooling sessions held twice during the semester.

【注意事項 / Notice】

・F科目中級(外国語による総合系科目)
・TOEIC®L&R 550点相当以上の英語力を有していることを前提に授業を実施する