日本語

Course Code etc
Academic Year 2024
College University-wide Liberal Arts Courses (Comprehensive Courses)
Course Code FD403
Theme・Subtitle Data Science, Sports data analysis
Class Format Face to face (all classes are face-to-face)
Class Format (Supplementary Items)
Campus Seminar
Campus Niiza
Semester Spring Semester
DayPeriod・Room Mon.1
ログインして教室を表示する(Log in to view the classrooms.)
Credits 2
Course Number CMP2431
Language English
Class Registration Method Exceptional Lottery Registration(定員:20人/ Capacity:20)
Assigned Year 配当年次は開講学部のR Guideに掲載している科目表で確認してください。
Prerequisite Regulations
Acceptance of Other Colleges
Course Cancellation 〇(履修中止可/ Eligible for cancellation)
Online Classes Subject to 60-Credit Upper Limit
Relationship with Degree Policy 各授業科目は、学部・研究科の定める学位授与方針(DP)や教育課程編成の方針(CP)に基づき、カリキュラム上に配置されています。詳細はカリキュラム・マップで確認することができます。
Notes

【Course Objectives】

This course covers major problems in data science as well as applied use cases in sports science. Students will learn the basic problem-solving methods using data science approaches.

【Course Contents】

This course will provide you knowledge regarding data science-based problem-solving skills. During this semester, you will learn (1) major data science problems, (2) and data science methods to solve such problems, (3) applied use cases in sports science. Students will also learn the basic usage of Python, a programming language, and Tableau, a data visualization tool.

Japanese Items

【授業計画 / Course Schedule】

1 Introduction and overview of the course
2 A standard process of data analysis
3 Data analysis use cases and use case definition (1)
4 Data analysis use cases and use case definition (2)
5 Data collection technologies in sport and wellness (1)
6 Data collection technologies in sport and wellness (2)
7 Descriptive statistics
8 Exploratory data analysis (1)
9 Exploratory data analysis (2)
10 Basics of machine learning
11 Machine learning/AI in sport and wellness
12 Class presentation and discussion
13 AI application development
14 Neural network and large language models

【活用される授業方法 / Teaching Methods Used】

板書 /Writing on the Board
スライド(パワーポイント等)の使用 /Slides (PowerPoint, etc.)
上記以外の視聴覚教材の使用 /Audiovisual Materials Other than Those Listed Above
個人発表 /Individual Presentations
グループ発表 /Group Presentations
ディスカッション・ディベート /Discussion/Debate
実技・実習・実験 /Practicum/Experiments/Practical Training
学内の教室外施設の利用 /Use of On-Campus Facilities Outside the Classroom
校外実習・フィールドワーク /Field Work
上記いずれも用いない予定 /None of the above

【授業時間外(予習・復習等)の学修 / Study Required Outside of Class】

Instructions will be on Canvas after course registration is complete.

【成績評価方法・基準 / Evaluation】

種類 (Kind)割合 (%)基準 (Criteria)
平常点 (In-class Points)100 Tests(30%)
Lab assignments(20%)
In-class presentation(50%)
備考 (Notes)

【テキスト / Textbooks】

その他 (Others)
Introduced in a classroom as needed

【参考文献 / Readings】

その他 (Others)
Introduced in a classroom as needed

【履修にあたって求められる能力 / Abilities Required to Take the Course】

【学生が準備すべき機器等 / Equipment, etc., that Students Should Prepare】

Students need to bring his/her laptop computer.

【その他 / Others】

【注意事項 / Notice】

・F科目上級(外国語による総合系科目)
・他に特別外国人学生が履修
・この授業は英語で実施する
・履修者はTOEIC®L&R 700点相当以上の英語力を有していることを前提に授業を実施する
・2016年度以降入学者:多彩な学び
・2015年度以前入学者:主題別A