日本語

Course Code etc
Academic Year 2025
College Graduate School of Business
Course Code KN004
Theme・Subtitle Survey Methods and Quantitative Analysis
Class Format Face to face (all classes are face-to-face)
Class Format (Supplementary Items) In principle, this class is held in-person. You will need access to a stable internet connection in an appropriate learning environment (including device) especially for select sessions with guest speakers and workshops (special online zoom sessions will be announced at least one week in advance).
Campus Lecture
Campus Ikebukuro
Semester Fall Others
DayPeriod・Room
ログインして教室を表示する(Log in to view the classrooms.)
Credits 2
Course Number MIB5011
Language English
Class Registration Method Automatic Registration
Assigned Year 配当年次は開講学部のR Guideに掲載している科目表で確認してください。
Prerequisite Regulations
Acceptance of Other Colleges 履修登録システムの『他学部・他研究科履修不許可科目一覧』で確認してください。
Course Cancellation ×(履修中止不可/ Not eligible for cancellation)
Online Classes Subject to 60-Credit Upper Limit
Relationship with Degree Policy 各授業科目は、学部・研究科の定める学位授与方針(DP)や教育課程編成の方針(CP)に基づき、カリキュラム上に配置されています。詳細はカリキュラム・マップで確認することができます。
Notes

【Course Objectives】

Upon completion of the course, students should:
1) have a better appreciation of quantitative methods in a business context
2) be able to undertake preliminary analysis using regressions
3) be able to use various statistics functions within EXCEL
4) be prepared to undertake course work in applied data analysis, finance, and economics.

【Course Contents】

This module is an introduction to data analysis and applied statistics. The course introduces topics in the context of finance, however, the methods and techniques covered in the class can be applied to a wide range of fields in business and economics.

Students should have access to EXCEL (Data Analysis Tools).

Japanese Items

【授業計画 / Course Schedule】

1 Introduction
2 Descriptive Statistics: Location
3 Descriptive Statistics: Spread
4 Descriptive Statistics: Correlations
5 The Normal Distribution and Inference: An Intuitive Introduction
6 The Normal Distribution and Inference: An Intuitive Introduction
7 The Regression Model: An Introduction
8 The Regression Model: Dummy Variables
9 The Regression Model: Applications
10 The Regression Model: Applications
11 The Regression Model: Estimating Beta (Market Model)
12 Research
13 Research
14 Research

【活用される授業方法 / Teaching Methods Used】

板書 /Writing on the Board
スライド(パワーポイント等)の使用 /Slides (PowerPoint, etc.)
上記以外の視聴覚教材の使用 /Audiovisual Materials Other than Those Listed Above
個人発表 /Individual Presentations
グループ発表 /Group Presentations
ディスカッション・ディベート /Discussion/Debate
実技・実習・実験 /Practicum/Experiments/Practical Training
学内の教室外施設の利用 /Use of On-Campus Facilities Outside the Classroom
校外実習・フィールドワーク /Field Work
上記いずれも用いない予定 /None of the above

【授業時間外(予習・復習等)の学修 / Study Required Outside of Class】

Review assigned readings and notes each week. Work on weekly assignments and project.

【成績評価方法・基準 / Evaluation】

種類 (Kind)割合 (%)基準 (Criteria)
平常点 (In-class Points)100 Assignments and In-Class Excercise(40%)
Participation(20%)
最終レポート(Final Report)(40%)
備考 (Notes)

【テキスト / Textbooks】

なし/None

【参考文献 / Readings】

【履修にあたって求められる能力 / Abilities Required to Take the Course】

【学生が準備すべき機器等 / Equipment, etc., that Students Should Prepare】

Students should have a PC notebook and/or pad with EXCEL and a stable access to the internet (from home).

【その他 / Others】

Detailed course outline posted on Canvas during the first week of class. Notes and readings posted on Canvas. Course schedule and content is subject to change (all changes/modifications will be posted on Canvas and announced in class). Students are expected to check Canvas and their Rikkyo email account on a regular basis for announcements.

【注意事項 / Notice】