日本語

Course Code etc
Academic Year 2024
College Graduate School of Business
Course Code KT501
Theme・Subtitle
Class Format Face to face (all classes are face-to-face)
Class Format (Supplementary Items) Face-to-face
Campus Lecture
Campus Ikebukuro
Semester Fall semester
DayPeriod・Room Fri.2
ログインして教室を表示する(Log in to view the classrooms.)
Credits 2
Course Number MIB6211
Language English
Class Registration Method Course Code Registration
Assigned Year 配当年次は開講学部のR Guideに掲載している科目表で確認してください。
Prerequisite Regulations
Acceptance of Other Colleges 履修登録システムの『他学部・他研究科履修不許可科目一覧』で確認してください。
Course Cancellation -(履修中止制度なし/ No system for cancellation)
Online Classes Subject to 60-Credit Upper Limit
Relationship with Degree Policy 各授業科目は、学部・研究科の定める学位授与方針(DP)や教育課程編成の方針(CP)に基づき、カリキュラム上に配置されています。詳細はカリキュラム・マップで確認することができます。
Notes Students are expected to have knowledge of Applied Econometrics(as KT231).

【Course Objectives】

Upon successful completion of the course, students should be able to:
* demonstrate an understanding of the key concepts of microeconometrics that can be applied to analyze cross-sectional and panel data,
* use computational skills to perform data analyses, and
* critically evaluate and discuss empirical research.

【Course Contents】

This course is to provide students with econometric theory and computational skills which are essential for data analysis. The emphasis will be placed on the application of the theory from a practical point. The course mainly builds upon the microeconometric methods including the linear and non-linear regressions, panel data analysis and the limited dependent variable models, and students will learn how to use Stata to conduct model estimations.

Japanese Items

【授業計画 / Course Schedule】

1 Multiple linear regression (MLR) model revisited
2 Instrumental variables estimation (I)
3 Instrumental variables estimation (II)
4 Difference-in-differences analysis (I)
5 Difference-in-differences analysis (II)
6 Panel data analysis: first-differenced estimation
7 Panel data analysis: fixed effects estimation
8 Panel data analysis: random effect estimation
9 Binary response: linear probability model
10 Binary response: latent variable framework
11 Binary response: Logit and Probit models (I)
12 Binary response: Logit and Probit models (II)
13 Corner solution response: Tobit model (I)
14 Corner solution response: Tobit model (II)

【活用される授業方法 / Teaching Methods Used】

板書 /Writing on the Board
スライド(パワーポイント等)の使用 /Slides (PowerPoint, etc.)
上記以外の視聴覚教材の使用 /Audiovisual Materials Other than Those Listed Above
個人発表 /Individual Presentations
グループ発表 /Group Presentations
ディスカッション・ディベート /Discussion/Debate
実技・実習・実験 /Practicum/Experiments/Practical Training
学内の教室外施設の利用 /Use of On-Campus Facilities Outside the Classroom
校外実習・フィールドワーク /Field Work
上記いずれも用いない予定 /None of the above

【授業時間外(予習・復習等)の学修 / Study Required Outside of Class】

Explorative learning will be announced on “Canvas” after the course registration.

【成績評価方法・基準 / Evaluation】

種類 (Kind)割合 (%)基準 (Criteria)
平常点 (In-class Points)100 Assignments(30%)
最終テスト(Final Test)(40%)
最終レポート(Final Report)(30%)
備考 (Notes)

【テキスト / Textbooks】

No著者名 (Author/Editor)書籍名 (Title)出版社 (Publisher)出版年 (Date)ISBN/ISSN
1 Jeffrey M. Wooldridge Introductory Econometrics: A Modern Approach, 7ed CENGAGE Learning 2019 9781337558860

【参考文献 / Readings】

No著者名 (Author/Editor)書籍名 (Title)出版社 (Publisher)出版年 (Date)ISBN/ISSN
1 A. Colin Cameron and Pravin K.Trivedi Microeconometrics Using Stata, Second Edition Volume I: Cross-Sectional and Panel Regression Methods Stata Press 2022 9781597183611
2 A. Colin Cameron and Pravin K.Trivedi Microeconometrics Using Stata, Second Edition Volume II: Nonlinear Models and Causal Inference Methods Stata Press 2022 9781597183628
3 Jeffrey M. Wooldridge Econometric Analysis of Cross Section and Panel Data, Second Edition MIT Press 2001 9780262232197

【履修にあたって求められる能力 / Abilities Required to Take the Course】

Students are expected to have knowledge of Applied Econometrics (as KT231).

【学生が準備すべき機器等 / Equipment, etc., that Students Should Prepare】

【その他 / Others】

【注意事項 / Notice】