日本語

Course Code etc
Academic Year 2024
College Graduate School of Business Administration
Course Code VL157
Theme・Subtitle
Class Format On-demand (all classes are on-demand)
Class Format (Supplementary Items) Online instruction will begin during the first week of the semester.
Campus Lecture
Campus Ikebukuro
Semester Fall Others
DayPeriod・Room
ログインして教室を表示する(Log in to view the classrooms.)
Credits 2
Course Number BDS5801
Language English
Class Registration Method Course Code Registration
Assigned Year 配当年次は開講学部のR Guideに掲載している科目表で確認してください。
Prerequisite Regulations
Acceptance of Other Colleges 履修登録システムの『他学部・他研究科履修不許可科目一覧』で確認してください。
Course Cancellation -(履修中止制度なし/ No system for cancellation)
Online Classes Subject to 60-Credit Upper Limit
Relationship with Degree Policy 各授業科目は、学部・研究科の定める学位授与方針(DP)や教育課程編成の方針(CP)に基づき、カリキュラム上に配置されています。詳細はカリキュラム・マップで確認することができます。
Notes

【Course Objectives】

Learning objectives include:
Conceptualize, develop and interpret the results of intermediate-level statistical analyses.
Further develop students' understanding of the concept of statistical inference and its application to more advanced statistical methods.
Further develop students' understanding of the rationale and methods of preparing data for statistical analysis.
Further develop students' ability to identify appropriate statistical analysis for specific types of data and research questions.

【Course Contents】

Review of key concepts and methods introduced in Statistics Essentials 1.
Multiple linear regression: testing and evaluating models and variables.
Factorial ANOVA: analysis using two or more independent variables.
Other methods: logistic regression, factor analysis, path analysis.

Japanese Items

【授業計画 / Course Schedule】

1 Introduction and course overview
2 Review of concepts and methods covered in Statistics Essentials 1 course.
3 Further understanding of correlation and variance.
4 Multiple linear regression: basic concepts and method.
5 Multiple linear regression: interpreting models and variables.
6 Multiple linear regression: model building methods.
7 ANOVA: from one-way to factorial designs.
8 ANOVA: main effects and interaction.
9 Logistic regression: underlying concept and relationship to multiple linear regression.
10 Logistic regression: interpreting results.
11 Path analysis: underlying concept and relationship to multiple linear regression.
12 Factor analysis: underlying concept and applications
13 Examples and applications
14 Review

【活用される授業方法 / Teaching Methods Used】

板書 /Writing on the Board
スライド(パワーポイント等)の使用 /Slides (PowerPoint, etc.)
上記以外の視聴覚教材の使用 /Audiovisual Materials Other than Those Listed Above
個人発表 /Individual Presentations
グループ発表 /Group Presentations
ディスカッション・ディベート /Discussion/Debate
実技・実習・実験 /Practicum/Experiments/Practical Training
学内の教室外施設の利用 /Use of On-Campus Facilities Outside the Classroom
校外実習・フィールドワーク /Field Work
上記いずれも用いない予定 /None of the above

補足事項 (Supplementary Items)
The basic method will be on-demand video lectures consisting of narrated slides.

【授業時間外(予習・復習等)の学修 / Study Required Outside of Class】

Readings, practice problems, and homework as assigned.

【成績評価方法・基準 / Evaluation】

種類 (Kind)割合 (%)基準 (Criteria)
平常点 (In-class Points)100 最終テスト(Final Test)(40%)
Homework and quizzes(60%)
備考 (Notes)

【テキスト / Textbooks】

その他 (Others)
Students are not required to purchase a textbook for this course.

【参考文献 / Readings】

その他 (Others)
Journal articles and other readings will be provided by the instructor.

【履修にあたって求められる能力 / Abilities Required to Take the Course】

Students should be comfortable with online instruction, including watching lecture videos, downloading course materials, and uploading assignments.

【学生が準備すべき機器等 / Equipment, etc., that Students Should Prepare】

Students should have access to a desktop, laptop or tablet that they can use to access the online class material and complete/upload assignments.

【その他 / Others】

【注意事項 / Notice】