日本語

Course Code etc
Academic Year 2024
College Graduate School of Artificial Intelligence and Science
Course Code VR116
Theme・Subtitle
Class Format Online (all classes are online)
Class Format (Supplementary Items) 発話を伴う授業を学内で受講する場合はX106教室、X107教室の利用可
Campus Lecture
Campus Ikebukuro
Semester Spring Semester
DayPeriod・Room Sat.3 , Sat.4
ログインして教室を表示する(Log in to view the classrooms.)
Credits 2
Course Number AIR5610
Language Japanese
Class Registration Method Automatic Registration
Assigned Year 配当年次は開講学部のR Guideに掲載している科目表で確認してください。
Prerequisite Regulations
Acceptance of Other Colleges 履修登録システムの『他学部・他研究科履修不許可科目一覧』で確認してください。
Course Cancellation -(履修中止制度なし/ No system for cancellation)
Online Classes Subject to 60-Credit Upper Limit
Relationship with Degree Policy 各授業科目は、学部・研究科の定める学位授与方針(DP)や教育課程編成の方針(CP)に基づき、カリキュラム上に配置されています。詳細はカリキュラム・マップで確認することができます。
Notes

【Course Objectives】

The purpose of this course is as follows:
(1) to develop the fundamental skills required to perform data analysis
(2) to foster advanced skills in implementing machine learning methods taught in classroom sessions of the Machine Learning course
(3) to evolve practical abilities to utilize machine learning via various methods relevant to data analysis.

【Course Contents】

This course includes introductory, primary, and supplementary topics. Introductory awareness involves hands-on exercises conducted to support entry level students. Primary subject matter concerns the implementation and evaluation of the methods explained in the lectures delivered in the "Machine Learning" course. Supplementary material refers to hands-on practices relevant to the utilization of machine learning. The first few lectures will be devoted to introductory awareness. Subsequent lectures will alternately attend to primary and supplementary topics.

Japanese Items

【授業計画 / Course Schedule】

1 Introductory topic 1
2 Introductory topic 2
3 Introductory topic 3
4 Primary topic 1
5 Supplementary topic 1
6 Primary topic 2
7 Supplementary topic 2
8 Primary topic 3
9 Supplementary topic 3
10 Primary topic 4
11 Supplementary topic 4
12 Primary topic 5
13 Supplementary topic 5
14 Primary topic 6

【活用される授業方法 / Teaching Methods Used】

板書 /Writing on the Board
スライド(パワーポイント等)の使用 /Slides (PowerPoint, etc.)
上記以外の視聴覚教材の使用 /Audiovisual Materials Other than Those Listed Above
個人発表 /Individual Presentations
グループ発表 /Group Presentations
ディスカッション・ディベート /Discussion/Debate
実技・実習・実験 /Practicum/Experiments/Practical Training
学内の教室外施設の利用 /Use of On-Campus Facilities Outside the Classroom
校外実習・フィールドワーク /Field Work
上記いずれも用いない予定 /None of the above

【授業時間外(予習・復習等)の学修 / Study Required Outside of Class】

座学の授業「機械学習」での対応する内容をよく復習してからこの授業に臨むこと。
授業中に出した課題は締切日までに提出すること。

【成績評価方法・基準 / Evaluation】

種類 (Kind)割合 (%)基準 (Criteria)
平常点 (In-class Points)100 授業への参加度と複数回のレポート(100%)
備考 (Notes)

【テキスト / Textbooks】

その他 (Others)
授業中に適宜指示する。

【参考文献 / Readings】

その他 (Others)
授業中に適宜指示する。

【履修にあたって求められる能力 / Abilities Required to Take the Course】

【学生が準備すべき機器等 / Equipment, etc., that Students Should Prepare】

【その他 / Others】

【注意事項 / Notice】

本科目は、5年以上の実務経験を有する実務家教員による授業であり、全授業回数の50%以上がディスカッションなど双方向形式の授業によって運営される。